Chemical implementation and thermodynamics of collective neural networks.
نویسندگان
چکیده
The chemical implementation of a neuron and connections among neurons described in prior work is used to construct collective neural networks. With stated approximations, these chemical networks are reduced to networks of the Hopfield type. Chemical networks approaching a stationary or equilibrium state provide a Liapunov function with the same extremal properties as Hopfield's energy function. Numerical comparisons of chemical and Hopfield networks with small numbers (2-16) of neurons show agreement on the results of given computations.
منابع مشابه
The Prediction of Surface Tension of Ternary Mixtures at Different Temperatures Using Artificial Neural Networks
In this work, artificial neural network (ANN) has been employed to propose a practical model for predicting the surface tension of multi-component mixtures. In order to develop a reliable model based on the ANN, a comprehensive experimental data set including 15 ternary liquid mixtures at different temperatures was employed. These systems consist of 777 data points generally containing hydrocar...
متن کاملPrediction of Kinematic Viscosity of Petroleum Fractions Using Artificial Neural Networks
In this work, artificial neural network (ANN) was utilized to develop a new model for the prediction of the kinematic viscosity of petroleum fractions. This model was generated as a function of temperature (T), normal boiling point temperature (Tb), and specific gravity (S). In order to develop the new model, different architectures of feed-forward type were examined. Finally, the optimum struc...
متن کاملPrediction of polyvinyl alcohol (PVOH) properties synthesized at various conditions by artificial neural networks technique
In this research samples of PVOH were synthesized at various reaction conditions (temperature, time, and amount of catalyst). First at 25˚C and 45˚C and constant catalyst weight samples of PVOH were prepared with different degree of hydrolysis at various times. For investigation of the effects of temperature, at times 20 and 40 min and constant weight of catalyst PVOH was prepared at various te...
متن کاملImplementation of a programmable neuron in CNTFET technology for low-power neural networks
Circuit-level implementation of a novel neuron has been discussed in this article. A low-power Activation Function (AF) circuit is introduced in this paper, which is then combined with a highly linear synapse circuit to form the neuron architecture. Designed in Carbon Nanotube Field-Effect Transistor (CNTFET) technology, the proposed structure consumes low power, which makes it suitable for the...
متن کاملEstimation of coal swelling index based on chemical properties of coal using artificial neural networks
Free swelling index (FSI) is an important parameter for cokeability and combustion of coals. In this research, the effects of chemical properties of coals on the coal free swelling index were studied by artificial neural network methods. The artificial neural networks (ANNs) method was used for 200 datasets to estimate the free swelling index value. In this investigation, ten input parameters ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 89 1 شماره
صفحات -
تاریخ انتشار 1992